Foundations of Machine Learning Al2000 and Al5000

FoML-22 Neural Networks - learning the basis functions

> <u>Dr. Konda Reddy Mopuri</u> Department of AI, IIT Hyderabad July-Nov 2025

So far in FoML

- Intro to ML and Probability refresher
- MLE, MAP, and fully Bayesian treatment
- Supervised learning
 - a. Linear Regression with basis functions (regularization, model selection)
 - b. Bias-Variance Decomposition (Bayesian Regression)
 - c. Decision Theory three broad classification strategies
 - Probabilistic Generative Models Continuous & discrete data
 - (Linear) Discriminant Functions least squares solution, Perceptron
 - Probabilistic Discriminative Models Logistic Regression

Neural Networks - I

So far in the supervised learning

 We have seen models that are linear combinations of fixed basis functions

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

So far in the supervised learning

- Fixed basis functions
 - o Don't scale easily to complex settings (e.g., curse of dimensionality)
 - Need to adapt the basis functions to the data e.g., SVM

$$y(\mathbf{x}, \mathbf{w}) = w_0 + \sum_{j=1}^{M-1} w_j \phi_j(\mathbf{x})$$

An alternative

- Fix the number of basis functions
- But, allow them to be adaptive
- → parametric form and learn them during the training

(Artificial) Neural Networks

- The linear models we have seen so far = linear combination of fixed nonlinear basis functions
 - What is f for regression and classification?

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x})\right)$$

- Let's extend this model
- Make the basis functions depend on 'learnable' parameters

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x})\right)$$

- Neural networks each basis function is a nonlinear function of a linear combination of inputs
 - Coefficients in the combination are adaptive parameters

$$y(\mathbf{x}, \mathbf{w}) = f\left(\sum_{j=1}^{M} w_j \phi_j(\mathbf{x})\right)$$

- Basic neural network model as a series of transformations
 - \circ M linear combinations of the i/p variables $x_1, x_2, ... x_D$

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

j = 1, ..., M, and the superscript 1 indicates the first transformation or 'layer'

- a_i are referred to as the 'activations'
- Then passed through a differentiable, nonlinear activation function h(.)

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

$$z_j = h(a_j)$$

- z_i are the o/ps of the basis functions
 - o referred to as the 'hidden units'
 - General nonlinear functions sigmoid/tanh/ReLU

$$a_j = \sum_{i=1}^{D} w_{ji}^{(1)} x_i + w_{j0}^{(1)}$$

$$z_j = h(a_j)$$

Activation Fucntions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

- These values are again linearly combined to give o/p units
 - This transformation second layer of the NN

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}$$

Finally, the o/p unit activations are transformed through an appropriate activation function → y_k

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}$$

- Regression identity $(y_k = a_k)$
- Binary classification sigmoid $(y_k = \sigma(\alpha_k))$
- Multiclass classification softmax

$$a_k = \sum_{j=1}^{M} w_{kj}^{(2)} z_j + w_{k0}^{(2)}$$

Overall

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

Data-driven Intelligence & Learning Lab

- All the weights & biases are grouped into w
 - Adjustable parameters
- Model is a nonlinear function from x to y
 - o Figure: 2-layered MLP (Multilayer Perceptron)

$$y_k(\mathbf{x}, \mathbf{w}) = \sigma \left(\sum_{j=1}^M w_{kj}^{(2)} h \left(\sum_{i=1}^D w_{ji}^{(1)} x_i + w_{j0}^{(1)} \right) + w_{k0}^{(2)} \right)$$

Data-driven Intelligence & Learning Lab

- What if the activation function on all the hidden units are linear?
 - o An equivalent network without any hidden units can be found
 - Why?
 - o Rare e.g., PCA

- Networks can be sparse
 - Not all weights may be present

Skip connects may be added

- FFNN no closed directed cycles
 - o o/p are deterministic functions of i/ps

- Approximation capabilities of these networks have been well-studied
 - These networks are very general

Weight space symmetries

 Multiple weights lead to the same i/p-o/p mapping function

Next Training the Neural Networks

